Saturday, November 30, 2019

The Root of all evil Review Essay Example

The Root of all evil Review Paper Essay on The Root of all evil I wonder who the author of this piece, is named in the book, The root of evil, the name of Alexander Vargo? Since this is not my first review of a book by this author, let me just remind you that there is a chance that Alexander Vargo most likely an alias designation of the publishing project that operates an unknown author or group of authors. The root of evil for my third book under the name of the writer. All three books are totally different. Icicle recalled the novels by James Rollins. Cook Fowles, Andahazi and Bruckner together. The root of evil has appeared narrative punctuated with information from Wikipedia, the imagery in the form of mathematical terms and jokes in the style of Distorting Mirror » Despite the interesting summary, the novel quite banal, is tied to the affair, which seemed to have a continuation of some kind. stories. And this all the time read is not the feeling of understatement. As if reading the second volume of the work, while the first was not even published. The hero was not impressed at all. On the way of Virtue, fighting against evil, definitely not pulled. It looks like it and most have something to fight. All adventure merged in attempts to escape from the castle, where the head of Satanists lives. In short, once again, a lot of excursions to Wikipedia (whether for a novel volume, or for the reader to understand what the devil and things like that), a lot of mathematical terms (isosceles ladies, square of the distance, similarity and equations abnormal type) many dubious jokes ( Those who get up early this bird, one who later falls owl and whoever late to bed and early to rise Crazy bird.?), a lot of fights (but still alive and relatively healthy) makes little sense and a huge disappointment We will write a custom essay sample on The Root of all evil Review specifically for you for only $16.38 $13.9/page Order now We will write a custom essay sample on The Root of all evil Review specifically for you FOR ONLY $16.38 $13.9/page Hire Writer We will write a custom essay sample on The Root of all evil Review specifically for you FOR ONLY $16.38 $13.9/page Hire Writer

Tuesday, November 26, 2019

Learn About the Falklands War

Learn About the Falklands War Fought in 1982, the Falklands War was the result of the Argentine invasion of the British-owned Falkland Islands. Located in the South Atlantic, Argentina had long claimed these islands as part of its territory. On April 2, 1982, Argentine forces landed in the Falklands, capturing the islands two days later. In response, the British dispatched a naval and amphibious task force to the area. The initial phases of the conflict occurred mainly at sea between elements of the Royal Navy and the Argentine Air Force. On May 21, British troops landed and by June 14 had compelled the Argentine occupiers to surrender. Dates The Falklands War began on April 2, 1982, when Argentine troops landed in the Falkland Islands. The fighting ended on June 14, following the British liberation of the islands capital, Port Stanley, and the surrender of Argentine forces in the Falklands. The British declared a formal end to military activity on June 20. Prelude and Invasion In early 1982, President Leopoldo Galtieri, the head of Argentinas ruling military junta, authorized the invasion of the British Falkland Islands. The operation was designed to draw attention away from human rights and economic issues at home by bolstering national pride and giving teeth to the nations long-held claim on the islands. After an incident between British and Argentine forces on nearby South Georgia Island, Argentine forces landed in the Falklands on April 2. The small garrison of Royal Marines resisted, however by April 4 the Argentines had captured the capital at Port Stanley. Argentine troops also landed on South Georgia and quickly secured the island. British Response After organizing diplomatic pressure against Argentina, Prime Minister Margaret Thatcher ordered the assembly of a naval task force to retake the islands. After the House of Commons voted to approve Thatchers actions on April 3, she formed a War Cabinet which first met three days later. Commanded by Admiral Sir John Fieldhouse, the task force consisted of several groups, the largest of which was centered on the aircraft carriers HMS Hermes and HMS Invincible. Led by Rear Admiral Sandy Woodward, this group contained the Sea Harrier fighters that would provide air cover for the fleet. In mid-April, Fieldhouse began moving south, with a large fleet of tankers and cargo ships to supply the fleet while it operated more than 8,000 miles from home. All told, 127 ships served in the task force including 43 warships, 22 Royal Fleet Auxiliaries, and 62 merchant vessels. First Shots As the fleet sailed south to its staging area at Ascension Island, it was shadowed by Boeing 707s from the Argentine Air Force. On April 25, British forces sank the submarine ARA Santa Fe near South Georgia shortly before troops led by Major Guy Sheridan of the Royal Marines liberated the island. Five days later, operations against the Falklands began with the Black Buck raids by RAF Vulcan bombers flying from Ascension. These saw the bombers strike the runway at Port Stanley and radar facilities in the area. That same day Harriers attacked various targets, as well as shot down three Argentine aircraft. As the runway at Port Stanley was too short for modern fighters, the Argentine Air Force was forced to fly from the mainland, which placed them at a disadvantage throughout the conflict (Map). Fighting at Sea While cruising west of the Falklands on May 2, the submarine HMS Conqueror spotted the light cruiser ARA General Belgrano. Conqueror fired three torpedoes, hitting the World War II-vintage Belgrano twice and sinking it. This attack led to the Argentine fleet, including the carrier  ARA Veinticinco de Mayo, remaining in port for the rest of the war. Two days later, they had their revenge when an Exocet anti-ship missile, launched from an Argentine Super Étendard fighter, struck HMS Sheffield setting it ablaze. Having been ordered forward to serve as a radar picket, the destroyer was hit amidships and the resulting explosion severed its high-pressure fire main. After attempts to stop the fire failed, the ship was abandoned. The sinking of Belgrano cost 323 Argentines killed, while the attack on Sheffield resulted in 20 British dead. Landing at San Carlos Water On the night of May 21, the British Amphibious Task Group under the command of Commodore Michael Clapp moved into Falkland Sound and began landing British forces at San Carlos Water on the northwest coast of East Falkland. The landings had been preceded by a Special Air Service (SAS) raid on nearby Pebble Islands airfield. When the landings had finished, approximately 4,000 men, commanded by Brigadier Julian Thompson, had been put ashore. Over the next week, the ships supporting the landings were hit hard by low-flying Argentine aircraft. The sound was soon dubbed Bomb Alley as HMS Ardent (May 22), HMS Antelope (May 24), and HMS Coventry (May 25) all sustained hits and were sunk, as was MV Atlantic Conveyor (May 25) with a cargo of helicopters and supplies. Goose Green, Mount Kent, and Bluff Cove/Fitzroy Thompson began pushing his men south, planning to secure the western side of the island before moving east to Port Stanley. On May 27/28, 600 men under Lieutenant Colonel Herbert Jones outfought over 1,000 Argentines around Darwin and Goose Green, ultimately forcing them to surrender. Leading a critical charge, Jones was killed later received the Victoria Cross posthumously. A few days later, British commandos defeated Argentine commandos on Mount Kent. In early June, an additional 5,000 British troops arrived and command shifted to Major General Jeremy Moore. While some of these troops were disembarking at Bluff Cove and Fitzroy, their transports, RFA Sir Tristram and RFA Sir Galahad, were attacked killing 56 (Map). Fall of Port Stanley After consolidating his position, Moore began the assault on Port Stanley. British troops launched simultaneous assaults on the high ground surrounding the town on the night of June 11. After heavy fighting, they succeeded in capturing their objectives. The attacks continued two nights later, and British units took the towns last natural lines of defense at Wireless Ridge and Mount Tumbledown. Encircled on land and blockaded at sea, the Argentine commander, General Mario Menà ©ndez, realized his situation was hopeless and surrendered his 9,800 men on June 14, effectively ending the conflict. Aftermath and Casualties In Argentina, the defeat led to the removal of Galtieri three days after the fall of Port Stanley. His downfall spelled the end for the military junta that had been ruling the country and paved the way for the restoration of democracy. For Britain, the victory provided a much-needed boost to its national confidence, reaffirmed its international position, and assured victory for the Thatcher Government in the 1983 elections. The settlement that ended the conflict called for a return to status quo ante bellum. Despite its defeat, Argentina still claims the Falklands and South Georgia. During the war, Britain suffered 258 killed and 777 wounded. In addition, two destroyers, two frigates, and two auxiliary vessels were sunk. For Argentina, the Falklands War cost 649 killed, 1,068 wounded, and 11,313 captured. In addition, the Argentine Navy lost a submarine, a light cruiser, and seventy-five fixed-wing aircraft.

Friday, November 22, 2019

The Best Volunteer Abroad Programs You Should Try

The Best Volunteer Abroad Programs You Should Try SAT / ACT Prep Online Guides and Tips By now you probably know that one thing colleges want to learn about you is how you spend your free time. Did you spend high school sitting around playing video games? Or did you get out, actively involve yourself in an activity and your community, and make a difference? One way of doing just that has become increasingly popular over the past several years: volunteering abroad. Read on for more on why students volunteer abroad, tips for choosing a volunteer abroad program, and our pick of some of the best volunteer abroad programs out there. Why Do Students Volunteer Abroad? There are many reasons that high school students choose to volunteer abroad. Some are looking for a unique volunteering opportunity that they think they can’t get at home. Going abroad to volunteer serves a dual purpose for many students: it allows them to combine a vacation and a little world exploration with also bettering their resumes for college. Students use volunteer abroad programs to see new cultures from the inside – or at least, from a different perspective than they would normally have on vacation sitting in a hotel room. Many volunteer abroad programs allow students to interact with (and sometimes live with) people from another culture. Students feel that this helps them develop tolerance, widen their world views, and become more independent and adventurous. Many students also like the idea that they're giving back while having fun. There are all sorts of programs out there to suit different interests: you could be working with animals, helping the environment, or teaching children how to read. It gives students a sense of accomplishment when they can actually see the difference they're making in someone else’s lives. Why not do that while also seeing a new part of the world? The Reality About Volunteer Abroad Programs Of course, many of the benefits of volunteer abroad programs can also be achieved by volunteering at home. You can still expose yourself to a new culture and learn how other people experience life. You can still make a difference that you can see every day. You’ll still be able to use your skills to make an impact in another person’s life and simultaneously build your college resume. And you can be more certain that you aren’t falling for a volunteer abroad scam that’s doing more harm than good. In fact, many colleges will look more favorably on local volunteer work than volunteering abroad. This is largely for all the reasons I stated above – colleges would rather see you volunteering because you are actually passionate about the work you are doing and the community you are helping, rather than trying to boost your resume while on vacation. But that doesn’t mean that you shouldn’t volunteer abroad. It can still be an amazing experience. But when you do it, choose a program wisely. So How Should I Choose a Program? Considering the above, there are a few rules that you should follow when choosing a volunteer abroad program. Rule 1: Be Honest with Yourself About Your Intentions Why do you really want to do this program? Is it just so that you’ll have something cool to put on your college application? Is it because you want to travel but not feel like you're wasting your time? Answering these questions honestly will keep you from wasting your money and someone else’s time. The desire to travel and learn about another culture is fantastic in and of itself. So if this is your main aim, try doing something else, like a study abroad program. It will allow you to make the most of your travel time and budget, and will also ensure that the people who go abroad to volunteer are actually interested in making an impact in their chosen projects. If you're just looking to bolster your resume, try volunteering at home. As explained above, colleges will look more highly on longer-term, local community service work, than they will on a brief project undertaken abroad. In the meantime, you’ll be saving yourself a bundle of money as well. Rule 2: Be Prepared for the Costs of the Program Volunteer abroad programs vary a lot in cost. They can range from a couple hundred dollars to several thousand. Make sure that if you do decide to spend the money on a volunteer abroad program, that it’s going to be a good use of your money. Be sure to ask yourself if you wouldn’t be better off volunteering locally and saving the money for college. Furthermore, it’s important to consider where the money is actually going in the project you're undertaking. Will most of the money be spent on transportation? On fun activities? On lining the pockets of the program coordinator? Or will it be going directly to helping a community? Most companies will not advertise these numbers publicly because they know the numbers won’t impress people. Make sure that part of your research of your programs includes calling them up and asking for this information. Once you know how much of your money will be going to the program, also ask yourself if the community would be better off if you just donated the full amount. But money isn’t the only cost of these kinds of programs. There can be large emotional tolls, as well. Are you prepared to immerse yourself in another culture? Can you adapt to extreme differences in living conditions and lifestyles? Are you a picky eater? Can you stand to be away from your family and friends for a long period of time? Can you handle interacting with people severely affected by poverty and illness? You won’t be of much use to anyone if being outside of your comfort zone is going to massively affect your productivity. So be honest with yourself before you sign up to try something as potentially challenging as one of these programs. Rule 3: Choose a Program That Will Benefit the Community This is the other side of the cost breakdown mentioned above. It’s important to understand how the money you're spending is going to help the community you will be involved in. It’s also important to understand if you're actually going to be doing work that will make a difference, or if you'll be doing work that makes you feel good but has little other real benefit. Do research and read reviews on the different programs to make sure they're legitimate and are actually helping out communities in need. Beware of volunteer abroad programs that are vacation in disguise, and those that are harmful scams. Rule 4: Choose a Program You Are Passionately Interested in If you choose a program that you're actually passionately interested in, it will usually be something that is reflected in your other interests, as well. You should try to pick a program that relates to interests that you already have, and ideally, that you have expressed elsewhere in your extracurricular activities at home. For example, say you love growing vegetables in your garden, and you're becoming increasingly interested in organic farming. A volunteer abroad program that allows you to explore your specific interest would be a good choice for you. Rule 5: Choose a Cause You Can Continue Working With Also, try to pick a program with a cause you can continue working for once you return home. Colleges want to see significant and sustained commitment to a certain area. So if you choose a volunteer abroad program that helps out endangered wildlife, follow it up by working at a local animal shelter once you get back, or become an advocate for local wildlife. Rule 6: Choose a Program That Will Challenge You Though you don’t want to aim for emotional burnout, at the same time you should choose a program that will expose you to new things, immerse you in a foreign culture, and force you to think about the world in a different way. For example, I knew several people in high school who went on youth group trips to build houses in Central America. The programs allowed them to interact almost exclusively with their friends the entire time, and exposed them very little to the local culture. At the end of the day, they had little understanding of why they were building houses, whom the houses were going to benefit, and if the work they had done had taken away potential jobs from the local community. If, in researching, the program seems to add little value to the local community and won’t allow you to get a good understanding of the problems and culture of the country you're visiting, there isn't much point in going. Instead, choose a program that will allow you to have a unique understanding of another culture, or will develop an interest in international relations or social justice. Now that you know what’s important in choosing a volunteer abroad program, here is a roundup of some of our favorites. These all cover a wide range of interests that many high school students have. They all have good programs for developing those interests, and would allow you to pursue similar volunteer work once you are back home. The Best Volunteer Abroad Programs for High School Students For students interested in sustainable living and organic farming†¦ Program Name: WWOOF: World Wide Opportunities on Organic Farms What is it? Students live with host families around the world while learning about organic lifestyles. You’ll be expected to help out in farming activities such as sowing seed, gardening, cutting wood, harvesting, wine making and cheese making for 4 – 6 hours per day in exchange for accommodation and food. Who is it for? Students who are 17 and older who are interested in organic farming and sustainable lifestyles, and also want to work and be part of a local community. Where is it? The program is worldwide! Countries throughout Europe, Africa, the Americas, and Asia participate. How long is the program? The length is negotiated directly with your host family. Stays can be as short as two weeks but can also last for several months. How much does it cost? Membership in WWOOF costs up to $72, plus the costs of traveling to your host’s location. Why do we like it? Students get complete cultural immersion through living with a host family and involving themselves in the local economy. They learn practical sustainable farming skills that they can continue to use when they're back home. How can you continue it back home? Organic farms are popping up throughout the country, and WWOOF also operates throughout the United States, which would give you ample opportunities to continue to pursue this interest once you get back. For students interested in language immersion and/or teaching English†¦ Program Name: SPI Abroad’s Costa Rica Immersion Program What is it? A chance to live in Costa Rica like a local, while getting an intensive immersion experience. You will live with a local family. Monday through Friday, students will attend level-appropriate intensive Spanish classes at a local language institute. They will also spend time 3 days per week volunteering in the local communities. Some examples of volunteer work include home repair, public works projects, working with youth, and nature preservation. Who is it for? High school students who are specifically looking for a language intensive experience. Where is it? Costa Rica How long is the program? 2 weeks or one month How much does it cost? $3,695 - $6,995 Why do we like it? Students get total cultural immersion through living with a host family. They also get the chance to further understand the culture by studying the local language. The volunteer projects are varied and can be tailored to suit students’ individual interests. How can you continue it back home? You can continue volunteering while using your Spanish skills. Many non-profits needs volunteers with language skills so that they can reach out to different underrepresented communities. Depending on the specific volunteer work you do, you may want to volunteer with youth programs or an environmental program. Program Name: Global Works France Language Immersion and Service Adventure What is it? Volunteers spend their time working with local French teens on volunteer projects, such as restoring the grounds of an 11th-century castle, helping maintain migration routes, and teaching English at summer camps. Students will have the opportunity for a 10-day homestay with a French family to complete the immersion experience. There are also many opportunities to learn about French culture. Who is it for? Students grades 9 – 12 who want a French immersion experience. Where is it? France How long is the program? 4 weeks How much does it cost? $6,995 Why do we like it? Students get to mingle with local teens, which is one of the most effective ways of getting to understand a new culture. They can further the cultural immersion through homestays with family. The volunteer projects are undertaken in collaboration with like-minded local students. How can you continue it back home? You can continue volunteering while using your French skills. Many non-profits need volunteers with language skills so that they can reach out to different underrepresented communities. You can volunteer locally to help preserve local cultural artifacts. You can also consider tutoring French. Program Name: Broad Reach West Indies French Immersion What is it? An intensive language immersion program on an island where English isn't spoken. You will take French classes in a language school, have a homestay with a local family, and do community service such as cultural exchange with local students, working in the local youth group â€Å"Ka zot ka fe†, and helping teach key English phrases to local workers. Who is it for? Grades 9 – 11 with at least one year of high school level French. Where is it? Several islands in the French West Indies How long is the program? 3 weeks How much does it cost? $5,980 Why do we like it? Students get opportunities for cultural and language immersion through classes and a homestay. Students help open up new business opportunities for local business owners by helping them to learn business English. How can you continue it back home? You can continue volunteering while using your French skills. Many non-profits need volunteers with language skills so that they can reach out to different underrepresented communities. You should also consider tutoring French and working in a local youth group. For students interested in sports†¦ Program Name: UVolunteer Teaching Sports in Thailand What is it? Many schools in Thailand can’t afford to have PE programs. You’ll be working in elementary schools and high schools in Trat as a PE coach. If you're interested in a certain sport, you can teach that, or you can teach general PE classes to help kids learn about teamwork and physical fitness. Who is it for? Teens aged 17 and older. Where is it? Thailand How long is the program? 2 weeks or more How much does it cost? $685 + Why do we like it? Students live in a small dorm in the middle of a Thai community out of the way of tourist areas. Students report being able to spend extensive time getting to know the groups of local families that surround them, which leads to great cultural immersion. Students get to interact daily with teachers and students, so they can experience first-hand the educational system of another country. How can you continue it back home? Continue volunteering in sports by coaching a youth sports team in your community or at your old grade school. For students interested in wildlife conservation†¦ Program Name: Go Eco What is it? GoEco was founded by experienced volunteers to give students opportunities to volunteer worldwide to help the environment and wildlife. Some trips include working in an elephant village in Thailand, working for Great White Shark conservation in South Africa, and an African wildlife rehabilitation center in Zimbabwe. Who is it for? Teens and others interested in working to help the environment. Where is it? Worldwide. How long is the program? Programs range from 2 to 12 weeks. How much does it cost? Programs start at $550. Why do we like it? Many of the programs start with a language-learning program, which allows volunteers to get more fully immersed with the local culture once the program begins. Many of the programs partner with local conservation groups so that students are working alongside locals to help fulfill their goals. How can you continue it back home? There are a lot of opportunities to get involved cleaning up your communities, raising awareness about eco-friendly practices, or working to help local animals at shelters. Program Name: GVI Greece Marine Conservation Awareness What is it? Join a group of international volunteers as they work to conserve endangered loggerhead turtles that live in the sands of Greek beaches. You’ll get to do various conservation projects, such as recording nesting activity, protecting hatchlings, and raising awareness. Who is it for? This program is specifically aimed at students aged 15 – 17. Where is it? Greece. How long is the program? 2 – 4 weeks How much does it cost? From $3,390. Why do we like it? Volunteers report a rigorous schedule of science lectures and conservation activities, from which they are able to see immediate and large results. Though working with an international group, volunteers also get to visit small local towns to interact with locals and get cultural immersion. How can you continue it back home? There are a lot of opportunities to get involved cleaning up your communities, raising awareness about eco-friendly practices, or working to help local animals at shelters. For students interested in art†¦ Program Name: Art Relief International What is it? Art Relief International works with struggling people in Chiang Mai, Thailand, by offering them the means to express themselves through art. Volunteers from a range of backgrounds help out with constructing new art projects, writing to donors, and working with the local community on art projects. Who is it for? People of all ages who are interested in art, art therapy, music, writing, teaching, graphic design, and fundraising. Where is it? Thailand How long is the program? You should plan to spend at least three weeks. How much does it cost? From $1,799. Why do we like it? Volunteers work closely with local community partners to create workshops and learn to communicate while lacking a common language. The focus is on doing work that benefits local non-profit organizations and collaborating with them to make long-term programs that they can continue using once the volunteers have left. How can you continue it back home? Take this as an opportunity to develop your artistic and leadership skills, and then bring that back to your home community. See if you can worked with disadvantaged groups or local youth groups to help people express themselves through art or music. For students interested in law and business†¦ Program Name: Law Business in China for Teens What is it? You will be given an overview of the Chinese legal system, and then spend your time visiting law firms and legal departments. Help research case studies, proofread documents, and increase cultural understanding. Who is it for? Teens aged 16 – 19 with an interest in law Where is it? Chengdu, China How long is the program? 2 weeks How much does it cost? $3,270 Why do we like it? Students get to work alongside local professionals, which allows for great cultural exchange. The work students do is directly applicable to careers they can pursue in the future. How can you continue it back home? Volunteer with a non-profit’s legal team to see how law can be used to make a positive impact in your own community. Program Name: Human Rights in South Africa for Teens What is it? Spend two weeks in South Africa living with a host family and working with locals in townships, while learning about how their lives are affected by poverty, crime, and racism. Work with local civil rights activists to learn about how they have solved problems in the past and discuss how to address continuing social justice issues. Who is it for? Students ages 16 – 19 who are considering a career in human rights Where is it? Cape Town, South Africa How long is the program? 2 weeks How much does it cost? $3,445 Why do we like it? Students get to work alongside local professionals, which allows for great cultural exchange. The work students do is directly applicable to careers they can pursue in the future. How can you continue it back home? Volunteer with a local non-profit that is committed to solving community problems like racism and poverty. For students interested in public health and medicine†¦ Program Name: Broad Reach Belize Wilderness Emergency Medicine What is it? Students will be trained and receive certification as a Wilderness First Responder and also get CPR certification. The courses will count towards 3 college credits in health science. Afterwards, you will work with La Loma Luz Hospital and the local communities on educational campaigns and other work such as assisting with medical paperwork, taking blood pressure and other vitals, and creating a week-long health campaign. Who is it for? Students grades 10 – 12 with an interest in medicine. Students must be over the age of 16. Where is it? Belize How long is the program? 22 days How much does it cost? $5,480 Why do we like it? Students get to work alongside local professionals, which allows for great cultural exchange. The work students do is directly applicable to careers they can pursue in the future, and the skills learned are easily transferred to volunteer projects back home. How can you continue it back home? Consider volunteering in a local hospital or a free health clinic to continue to provide necessary services to people who can least afford them. Program Name: Public Health in Tanzania for Teens What is it? Learn about public healthcare in a developing country. You will spend your time doing medical outreach work alongside local doctors and nurses, such as educating children in orphanages about the importance of washing their hands. You will also be able to assist doctors where possible. Who is it for? Teens ages 16 - 19 Where is it? Arusha, Tanzania How long is the program? 2 weeks How much does it cost? $2,970 Why do we like it? Students get to work alongside local professionals, which allows for great cultural exchange. The work students do is directly applicable to careers they can pursue in the future, and the skills learned are easily transferred to volunteer projects back home. How can you continue it back home? Consider volunteering in a local hospital or a free health clinic to continue to provide necessary services to people who can least afford them. For students interested in journalism†¦ Program Name: GLA Photography and Journalism Program What is it? GLA (Global Leadership Adventures) is developing a program for students who dream of one day working for National Geographic or a similar publication and who want to get real experience in how journalism can shape international perceptions. GLA operates their programs in non-tourist areas of developing countries. Who is it for? High school students interested in journalism Where is it? Worldwide How long is the program? The programs usually range between one and six weeks. How much does it cost? Programs start around $3,400 Why do we like it? Though the program is still in development, GLA has a strong reputation for placing students in non-touristy villages where they get large exposure to local culture and are able to work closely with staff members from their host country. GLA also has a unique leadership mentoring program, which pushes students to reflect on how they can use the skills they have learned to continue making a difference once they return home. How can you continue it back home? Get involved in your school or community newspaper. For students interested in archaeology†¦ Program Name: Archaeology in Romania for Teens What is it? Work at a classical archaeological site in Brasov, Romania. You’ll spend time doing excavations, analyzing findings, attending workshops, and conducting presentations. Who is it for? Teens 16 – 19 years old who have an interest in Eastern Europe, classical civilizations, and history. Where is it? Romania How long is the program? 2 weeks How much does it cost? $3,445 Why do we like it? Projects Abroad allows volunteers to stay with host families for cultural immersion while learning practical excavation, analysis and reporting skills that they can use in future jobs. The money paid for the project goes towards making sustainable long-term conservation and community service projects around the world. How can you continue it back home? Consider volunteering with a museum if you're interested in history and learning about past civilizations. You can also start showing interest in your studies (such as taking Latin classes). Program Name: Inca Projects and Archaeology in Peru for Teens What is it? Work outdoors on archaeological activities in the Inca’s Sacred Valley of Peru. You’ll be working with local archaeological experts to help uncover Incan ruins, and will also help run community projects with the other volunteers. Who is it for? Teens aged 16 – 19. Where is it? Peru How long is the program? 2 weeks How much does it cost? $2,970 Why do we like it? Projects Abroad allows volunteers to stay with host families for cultural immersion while learning practical excavation, analysis and reporting skills that they can use in future jobs. The money paid for the project goes towards making sustainable long-term conservation and community service projects around the world. How can you continue it back home? Consider volunteering in a museum. Depending on where you live, some museums may have volunteer positions that will allow you to continue studying Native American cultures. Review: How to Find the Right Program for You Don’t see something on this list that speaks to your interests? Try searching online for programs that relate to something you're passionate about. There are hundreds of volunteer abroad programs, and chances are good that there will be one that will allow you to develop one of your passions. Remember the key things to look out for when you're choosing a program: Understand where the money will be going and how you will be benefiting the local community Choose something that will allow you to pursue a passion or academic interest Find a program that will let you work in an area that you can continue working in back home Try something that will challenge you to learn and grow A bit of research and review reading should let you know if you've found a volunteer abroad program that’s worth pursuing. What’s Next? Not sure if volunteering abroad is for you? Check out our article on the benefits of volunteering abroad. If you’re interested in something more local, check out the 9 best places to do community service. Already volunteered? Read this guide to how to get a good community service letter. Want to improve your SAT score by 160 points or your ACT score by 4 points?We've written a guide for each test about the top 5 strategies you must be using to have a shot at improving your score. Download it for free now:

Wednesday, November 20, 2019

The climate emergency by Al Gore Assignment Example | Topics and Well Written Essays - 250 words

The climate emergency by Al Gore - Assignment Example The main purpose of the research is to present that in his speech titled â€Å"The Climate Emergency†, Gore defines â€Å"climate emergency† as â€Å"a crisis with an unusual sense of emergency attached to it†. After the introduction of the subject matter, Gore discusses the process known as â€Å"greenhouse effect† and its causes. In this regard, he describes the major factors that contribute to the process of climate change and illustrates his words with a range of examples, such as the statistical data on the level of melting of glaciers in the Arctic. In addition to this, Gore states that climate change is directly caused by several cultural factors. In the second part of the speech, Al Gore analyzes three main causes of climate change, such as the growth of population, the rise of technology, and people’s way of thinking. With the growth of population, demand for resources (food, water, energy) increases and causes the decrease of supply of the se sources. New technology presents the humanity with new power (for example, nuclear warfare) and the consequences of its use are not usually taken into account. The final factor discussed by Gore in his speech is people’s way of thinking and their attitude toward the problem. More specifically, the author claims that people tend to think of climate change as of a slow process (even though its pace is rather high) and underestimate it consequences.

Tuesday, November 19, 2019

Interface Design Examples Search based on Heuristics 4 Assignment

Interface Design Examples Search based on Heuristics 4 - Assignment Example The screenshot appears when one has logged in the spacewalk web interface. Some of the highlights that may be displayed on the screen which may help user to see what is going on include; postdate systems, release of recent errata and critical monitoring status among other highlights. This screenshot help to map specimen for georeference obtained to other data base search (Shapley, Para-1). This screenshot is efficient and effective because it uses language that users can understand (Shapley, Para-1). Additionally, it helps to conduct assessment by taking into consideration all the heuristic principles (Shapley, Para-1). An example of this screenshot is the User Interface design and implementation which appears on the window XP when one presses the search button on the explorer tools bar. It allows the user to specify the kind of file he or she is searching for and in case the user makes a mistake he or she can Undo or redo. This screenshot assist data entry screenshot or consistency management screenshot which provides a list of all the elements that may be applied during the modeling process. The assisted data mechanism in this screenshot can help a person to avoid errors when making entries by enhancing consistency compliance to set standards. In this screenshot both experienced and inexperienced users are allowed to conduct frequent activities without going through unnecessary procedures. Hence, making it more flexible and efficient to use. The above screenshot help to enhance readability and inclusion of all the relevant information in the program that one is using.This screenshot may be available in microsoft spreadsheet,word and powerpoint. Therefore, based on the above interface design examples, it can be scrutinized how various screenshots for each of the ten heuristic may be used to execute various operations. Conclusively, it can be observed how screenshot are importance

Saturday, November 16, 2019

Factory Farming is cruel to animals Essay Example for Free

Factory Farming is cruel to animals Essay It is so amazing that most Americans are so caring of the animals they keep as pets, and yet are so unconcerned about the upbringing or disposition of the ones they cook for dinner. It is amazing how some Americans see themselves as sympathizing folks and animal lovers until they reflect on what they just ate. Society loves animals as pets, adopts them as extensions of their families, spend ridiculous amounts of money on them, and mourn their deaths. How is it that these same Americans are so indifferent towards the ones they cook for dinner (Arora, 2013)? Factory farms dominate U. S. food production, employing practices that severely abuse animals, puts an enormous strain on our natural resources, and threatens the Nation’s health. Factory farms provide cheap meat that is more affordable to more people, utilizes less real-estate, creates the avenue for more farming jobs to stay in the U.S, and allows cheap fast food to exist. These are really great advantages of the factory farming industry, but come at a tremendous cost. Factory farming puts an enormous strain on our natural resources. According to a report in Farmsanctuary (2013), the factory farming industry puts incredible strain on our natural resources. The extreme amount of waste created by raising so many animals in one place pollutes our land, air, and water (para. 2). Unmanaged and untreated waste that accumulates from combined animal operations is contributing to emissions that are rapidly warming the planet, creating water pollution, and dead zones in our oceans and lakes. The environments in which these animals are confined are severely contaminated and present a significant source for increased infection in their animals, especially poultry, their by-products and eventually humans (O’Brien, 2001). The preservation of our natural resources is important to our survival. If the accumulation of waste and byproducts are allowed to continue due to substandard practices of factory farming industries, our natural resources will continue to diminish. This depletion will inevitably contribute to or provide a catalyst for other problems like issues with our health. When it comes to our health, Americans are very concerned. They may turn a blind eye to the environmental fall-out caused by Factory farming, but they will raise their concerns about the health risks. Diseases like Salmonella, Mad cow, and breathing problems like asthma are increased because of the effects of factory farming on our natural resources. There is also an increase of antibiotic-resistant diseases being identified due to the substandard their practices. In the report from Farmsanctuary (2013), Residents of rural communities surrounding factory farms report high incidents of illness, and their property values are often lowered by their proximity to industrial farms. To counteract the health challenges presented by overcrowded, stressful, unsanitary living conditions, antibiotics are used extensively on factory farms, which can create drug-resistant bacteria and put human health at risk (para. 3). The consistent contact of factory farmed animals with these health hazards, combined with the abuse of antibiotics and growth hormones, as well as other drugs to boost productivity, greatly increases the possibility of infection and disease in its consumers. The byproducts created by theses practices pollute our drinking water and the land that these same farmers plant crops, further exasperating farming conditions by producing unhealthy crops that increase the health risk of consumers. If society only scratches the surface of life down on the factory farm, they will see that diseases like Mad Cow disease may be the tip of the iceberg. In a range of areas, from feeding regimes, to animal housing, to the use of drugs in the pursuit of productivity, human health may be threatened by factory farming (O’brien, 2001). The continued accumulation of waste, combined with the health risks that have become natural by products of Factory farming have become a significant threat to society. If something is not done to alleviate or significantly reduce these effects, the Nation may be on a path of self destruction through overzealous production of food to satisfy consumer consumption, meet consumer demands, and boost financial statuses of farmers in the industry. The main aspect that can be immediately addressed to improve Factory farming living is the living conditions in these factories. The overcrowding of animals at these farms creates a frustrated work environment that fosters accepted abuse, which in-turn amplifies the waste and health conditions. This vicious cycle perpetuates an issue that will inevitably lead to issues of epidemic proportion. A report by Long (2013), stated that, Chickens are crowded so tightly together that they can barely turn around, never seeing daylight or eating a single blade of grass. Beef cattle are finished in huge feedlots, standing all day in their own manure, again with no access to the fresh grass that has been their natural diet for thousands of years. (para. 1). These conditions may not sound so detrimental to some, but combined with the abuse they endure, the conditions are unbelievable and inhumane. Here are some examples given by Editorial Today (2008) on animal cruelty at these farms, Cows are still being forced to be cannibalistic, as they are fed blood, bone meal, and other miscellaneous aspects of other cows (no brain matter, but most everything else)†¦.. [ ] Veal calves are crammed in pens so small that they can’t move their limbs†¦..[ ] Animals are put in semi-darkness which in some cases, cause unbearable conditions (para. 7). And for the cultivation of â€Å"Foie gras† (a delicacy), farmers force-feed ducks and geese an unnatural amount and type of food until their livers become diseased and enlarge up to ten times their normal, healthy size (etoday, 2008). Finally, there are everyday, routine mutilations that are being conducted all in the name of productivity. Mutilations like castration, de-beaking, de-toeing, tail docking, and others. All of which are executed without any form of anesthesia. Why has this transformation happened and is allowed to continue one may ask? Well, the answer is simply to accommodate the mass meat industry and to satisfy the demand of a carnivorous society. It is the twentieth century ideology of modern economics and the assembly line, turning farm animals into number-tagged bodies to be fattened, disinfected, and processed as quickly and cheaply as possible (Arora 2013). Because of this demand, large numbers of animals are being raised in extreme confinement. They are regarded as commodities to be exploited for profit, not humane animals, able to feel pain and suffering, and possessing a soul. Factory farmed animals are bred to grow unnaturally fast and large for the purpose of maximizing meat, egg, and milk production for the food industry. Their bodies cannot support this growth, which results in debilitating and painful conditions and deformities (Farmsanctuary, 2013). Many in society are now getting their voices heard as they ask the question, â€Å"Isn’t there a better way to produce food?† If the practice of mass meat holocaust is allowed to continue at these Factory farms, there are several aspects of society that will continue to degrade. The significant contribution to diseases and natural resource depletion that taints the water, soil, and air of the external environment will perpetuate. These contaminants will continue to finds it’s way into human bodies as chemical pollutants (antibiotics, pharmaceuticals in the meat and our drinking water) and greatly affect other systems with consequences like birth defects and reduced life expectancy. And there is tradition. There natural passing down of tradition from generation to generation will be lost. All the first-hand knowledge and experience in the farming industry will silently be erased due to the limited raising, handling, basic interaction of livestock and farm animals in the modernity of the factory industry. Generations of farmers will grow up without the first-hand experience and knowledge of farming and the art will inevitably be lost. Several proactive groups and other agencies in government continue to advocate the reduction of inhumane and unhealthy practices in the factory farming industry at a vigorous rate. Yet consumers continue to partake, invest, and expand the factory farming industry. How is it possible that even after the education of the public on how animals are treated, most of us them still decide to continue the patronization of factory-farmed meat? An article in editorial today gave one answer when it stated, â€Å"We might conclude that the price we make animals pay, and the price we pay in sacrificing part of our humanity, are worth the benefits (para. 6).† Could this be true? Society is willfully to turn a blind eye to the cruelty because of the lust for meat? This raises another question, when and where does it end? How far is society will to go, and how much are they willing to sacrifice to receive fast, cheap meat? What will it take to rekindle their capacity for love and stop the abused process of obliteration? There are no easy answers to the myriad of questions. Factory farms continue to dominate U.S. food production, employing practices that severely abuse animals, putting a tremendous amount of strain on natural resources, and threatening the health of the nation with disease. However, there is one thought that has become accepted course of action amongst advocates. Consumers must eliminate or reduce the consumption of non-organic and inhumanely-raised beef, pork, chicken, meat, eggs, and dairy products, as well as farmed fish. Force Factory farmers and the meat industry to rethink their methods of production so that they, along with consumers, do not become the associate authors of a diseased, unsympathetic, cruel, and dying society. Mahatma Gandhi said it best, â€Å"The greatness of a nation and its moral progress can be judged by the way its animals are treated. Does this nation consider itself great? References ARORA, N. (2013). On Eating Animals. Humanist, 73(4), 26-31. Editorial Today. (2008). Hobbies and Interests. Factory Farming Pros and Cons. Retrieved from: http://www.streetdirectory.com/etoday/factory-farming-pros-and-cons-awwlc.html Farmsanctuary. (2013). Farming. Retrieved from: http://www.farmsanctuary.org/learn/ factoryfarming/ Long, C. (2000, Nov). Factory farming is fouling our food. Organic Gardening, 47, 12. Retrieved from http://search.proquest.com/docview/203726517?accountid=32521 OBrien, T., Adock, M., Rifkin, J., Pickard, B. M. (2001, 06). Factory farming and human health. The Ecologist, , 30-34. Retrieved from

Thursday, November 14, 2019

Of Mice And Men: Four Major Themes :: essays research papers

Of Mice and Men: Four Major Themes "Of Mice and Men", by John Steinbeck, is composed of four major themes. These themes are the value of dreams and goals, moral responsibility, social injustice, and the bond of friendship and loyalty. The value of dreams and goals are that they provide hope and the desire to keep going in life, rather than laying down to die. When Lennie is feeling depressed in the woods he asks George to tell him about the "dream farm" again. This is the farm that Geore and Lennie hope to own someday. Even though this dream seems almost impossible at the time it still generates enough hope to keep Lennie and George going. When George starts talking bout it Lennie gets all excited and happy and so does George. Another example of the power of dreams is when Candy over hears George and Lennie's "dream farm" and becomes a part of the dream. Candy goes from a depressed sad additude to a cheerful excited one. He now has hope of doing something and it came from the "dream farm". A final example of the value of dreams and goals is when Crooks hears of the farm. Crooks is a lonely black man who has no future, but when he starts to think of how he can be a part of the dream he also gets happy and excited, until his dream is crushed. Many people of good character have to honor certin moral responibilites. George is bond by his own moral to take care care of Lennie. No one makes him do it, he just does it because it feel like the right thing to do. Candy felt like he neglected his moral responibility to shoot his own dog. Candy felt real bad inside because it was his job to shoot his dog but instead Carlson shot him. This shows that when a person goes against what is moraly right to them , they hate themselves for it. At the end of the story George is forced, out of moral, to shoot Lennie. It was the right thing to do, and even though it almost killed George inside to kill his best friend, he still did it. Social injustice is when a person or a goup of people feel they are better than people who are different by race, inteligence, age, sex, or other differences. Curley is rude and mean toward Lennie for the sole reason that Lennie is a big guy. Curely dosn't like big guys so he singles out Lennie and

Monday, November 11, 2019

Bus Frequency Determination Using Passenger Count Data

Tmnspn. Rcs:A Vol. 18A. No. 516. pi. 439153. Printed m ths U. S. A. 1984 0191-2607’81 s3. @3+m Pcr&mon Rss L:d. BUS FREQUENCY DETERMINATION PASSENGER COUNT DATA Department USING of Civil Engineering, Transportation Research Institute, Tcchnion-Israel Technology, Haifa, Israel (Received 21 February 1983; in revised form 5 December 1983) Institute of Abstract-The importance of ridership information has led transit properties to increase the amount of manually collected data or alternatively to introduce automated surveillance techniques.Naturally, the bus operators are expected to gain useful information for operations planning by obtaining more accurate passenger counts. This paper describes and analyzes several appropriate data collection approaches for the bus operator in order to set the bus frequencies/headways efficiently. Four different methods are presented to derive the bus frequency: two are based on point check (maximum load) data and two propose the use of ride check (load profile) data.A ride check provides more complete information than a point check, but at a greater cost, and there is a question as to whether the additional information gained justifies the expense. Based on available old profiles, the four methods provide the bus scheduler with adequate guidance in selecting the type of data collection procedure. In addition, the scheduler can evaluate the minimum expected bus runs when the load standard is released and avoid overcrowding (in an average sense) at the same time.Alternative timetables are also investigated in conjunction with minimizing the required bus runs and number of buses for a single route. In this way, the derived headways can be analyzed within an acceptable range while considering the possible changes incurred indirectly to the fleet size. The integration between resource. saving and frequency determination procedures allows the scheduler’s performance to be improved. 1. IN7’RODUCI’ION AND ORJEC TIVES It is well known that transit demand varies systematically by season, day-of-the-week, time of day, location and direction of travel.However, the absence of accurate data on travel patterns at the route level has made it impossible to deploy transit resources to match these variations and thus to increase the efficiency of system operation. Accurate ridership information is needed for transit planning and scheduling and also to comply with external reporting requirements (e. g. Section 15 of the U. S. Urban Mass Transportation Act). Consequently, some transit operators have started to use automatic passenger counters while others are adding more checkers to collect the data manually.The primary objective of passenger counts, from the transit operator’s viewpoint, is to set vehicle frequencies/headways efficiently on each route. Other uses of ridership information are in revenue estimation and measurement of dynamic patronage trends. The topic addressed in this paper is two-fold. The first segment involves the setting of bus frequencies in order to maintain adequate service quality and minimize the number of buses required by the schedule. The second is an evaluation tool to efficiently allocate the cost for gathering appropriate passenger load data at the route level.It is common to almost all bus operators worldwide for load profile information along the entire iThis study was written while the author was in 1982 at the Transportation Systems Center (IX), Cambridge, Massachusetts, U. S. A. TSC Support is gratefully acknowledged. 439 length of the bus route (ride check) to be gathered annually or every few years. Usually the most recent passenger load information will be at one or more selected stops along the route where the bus carries its heaviest loads (point check).A ride check provides more complete information than a point check, but is more expensive because either additional checkers are needed to provide the required data or an automated surveillance system is used. There is a question as to whether the additional information gained justifies the expense. The objective of this study is to explore the way in which a bus operator can use the old profile to determine whether the ride check method or the point check method is appropriate in collecting the new data. This paper attempts to achieve this objective through three major parts.First, a brief review is introduced, and thereafter four different methods are presented to derive the bus frequency: two are based on point check (max load) data and two propose the use of ride check (load profile) data. Second, a preliminary criterion is established for determining the appropriateness of each of the data collection methods. Third, in order to complete the evaluation of the point check and ride check methods, altemative timetables are derived along with consideration of the minimum fleet size at the route level. 2. POINT CHECK (MAX LOAD) AND RIDE CHECK (LOAD PROFILE) ME THODS . 1 Review Generally, bus operators organize ride check surveys routinely at time intervals greater than or equal to one year and update their point check information 40 AVISHAI CEDER where P, is the average (over days) maximum number of passengers (max load) observed on-board in period j, c represents the capacity of a bus (number of seats plus the maximum allowable standees), and yj is the load factor during period j, 0 < ;: < 1. 0. For convenience, let us refer to the product y,c as d,, the desired occupancy on the bus at period j. The standard yi can be set so that 4. s equal to a desired fraction of the capacity (e. g. d, = number of seats). It is worth noting here that if P, is based on a series of measurements, one can take its variability into account. If the stochastic data allow, this can be done, for example, by replacing the average value in eqn (I) with P, + bZj where b is a predetermined constant and Z, is the standard deviation associated with P,. The max load d ata is usually collected by a trained observer who stands and counts at the bus stop believed to be located at the beginning of the max load section(s).This stop has usually been determined from old ride check data or from information given by a mobile supervisor. Often, these observers are told to count at only one stop during the whole day instead of moving to a different max load point at every period j. In this case the scheduling department identifies the point at which the bus is starting to carry a load associated with the heaviest daily load along the route. This method is referred to as Method I and can be written more explicitly as: $‘=? ,j=l,Z I ,†¦ , 9 several times a year for possible schedule revisions (see Vuchic, 1978).It is important to note that the frequency and the cross-sectional characteristics of these data collection procedures should be determined by the sampling techniques used. This statistical aspect, which is not part of this study, can be app roached through a variety of literature about sampling and is mentioned specifically in Attanucci Ed al. (198 I). Schedule revisions range from completely new timetables for new or revised routes to daily adjustments that accommodate changes in working hours and school dismissal times. The methods used by the bus operator to set headways are commonly based on existing service standards.These standards are based on two requirements: (i) adequate spaces will be provided to meet passenger demand, and (ii) the upper bound value is placed on the headways to assure a minimum frequency of service. The first requirement is appropriate for heavily traveled route hours (e. g. peak period), and the second for lightly traveled hours. The first requirement is usually met by a widely used peak loud fucfor method (point check), which is similar to the max load procedure-both are explained below. The second requirement is met by the policy headway which usually does not exceed 60 min and in some ca ses is restricted to under 30 min.Occasionally, a lower bound value is set on the headway by the bus operator, based on productivity or revenue/cost measures. There are also mathematical programming techniques to approach simultaneously the problems of route design and service frequency (see Lampkin and Saalmans, 1967 for an example). Recently such a technique has been adopted to find the appropriate headway so as to maximize the social benefit subject to the constraints on total subsidy, fleet size, and bus occupancy levels (Furth and Wilson, 1981). This model may be shown to be useful in policy analysis.However, these mathematical programming models have not been generally adopted by transit schedulers since they are not sensitive to a great variety of system specific operational constraints. For example, they cannot simultaneously determine even spaced headways and uneven spaced headways for situations of scheduling exceptions. 2. 2 MUX loud methodr The purpose of the basic stand ard used by bus schedulers is to ensure adequate space to accommodate the maximum number of on-board passengers along the entire route, for a given time period (e. g. one hour).Let the time period be denoted asj. Based on the peak load factor, the number of buses required for period j is: where P, is defined as the load in period j associated with the daily max load point. Additional notations are: max i Pii = f P,, and ES j-1 j-l P, = max P, LS where there are q considered time periods; S represents the set of all bus stops i, and P, is a defined statistical measure (simple average or perhaps with the standard deviation consideration) of the total number of passengers which are on-board all the buses departing stop i during period j.Table 1 displays the ride check information which will be used throughout the paper. This is actual data collected on one route in Jerusalem-route 27(A) of Egged (The Israel National Bus Carrier). In Table 1, the first and second columns are the distanc es (in kilometers) between each two adjacent bus stops and the stop name, respectively. The set of stops S includes 34 i’s excluding the last stop. The first two rows represent the time interval, j = 1,2,. . . , 14, where each period of one hour is associated with a given column. In the third row are the number of buses scheduled in each period.The fourth row Bus frequency determination using passenger 1. Initial data count A data 441 Table for bus No. 27 direction: 12 59 1. 75 75 20 . 5 75 76 5. 9. 93 99 (25 ,511 102 16. to2 (81) (02 (98 ‘08 206 108 19. ,,, 126 (80 (84 192 (92 132 14, (95 195 (55 196 162 19. (93 18. (93 132 159 I. 1 (47 138 (35 (28 I,7 ,,a t,. (3. ‘(1 I32 10. 9 ,,a 108 96 78 78 78 78 53 33 19 20 (2 ____ ____ 158 20. 208 215 220 252 268 259 28. 280 280 250 28. 295 295 29. 299 252 2. 9 235 236 228 22. 212 2,6 (80 l-72 (5. 452 ,. O tar (0. 72 40 ____ 180 223 225 239 2. 5 2. 5 2. 5 250 2. 8 2. 3 2. 2. 5 2. 5 235 240 2. 0 239 203 198 195 200 (98 190 ( 78 159 (53 I38 135 115 105 93 95 90 68 ____ 175 235 220 220 220 220 230 255 2. 0 295 3,s 320 320 320 3m 300 290 290 320 250 290 3t0 310 285 255 210 (90 195 (75 (55 (00 (35 90 20 ____ 239 266 255 270 266 263 259 253 29. 265 270 273 253 259 2. 9 239 228 23, 2,7 (93 $75 ,. , 151 1. 7 t. 0 ,,a 95 8. 60 49 . 9 . 9 32 ,I ____ 280 351 375 379 375 378 37, 36, 36. 399 37, 37, 35. 37, 357 3. 7 335 239 2. 5 210 196 199 192 165 133 102 77 ;; ii 50 10 i; 42 10 –__ 320 411 395 392 397 3,. 395 398 390 387 390 40, 398 403 403 39. 55 339 3. 7 29. 299 270 25. 256 2. 8 209 192 179 136 120 109 (28 (0, 37 ____ 275 4. 1 450 462 . 95 . ,7 455 465 477 495 . BO 47, 455 474 4,. .,, . 50 . 26 120 350 3. 5 336 339 336 303 25. 2. 9 225 (92 183 (68 ‘80 255 26, 25. 273 257 273 285 297 29, 306 32. 3,s 3,2 315 303 29. 2. 9 2. 0 23. 229 20, ,,. ,53 (38 II iii 51 ____ (05 235 295 308 315 3,9 325 329 325 3,s 31. 9 320 320 32. 9 325 335 338 3,9 2. 3 2. 3 239 220 213 200 170 (65 155 153 155 (43 130 129 (15 70 30 . ___ 90 (08 ,. I 14, 150 I. 7 I. 4 I. 7 f50 (50 1. 4 1. 7 153 159 (59 $55 1. 7 ,,, I,, 4 17 123 (1.Il. iO5 93 57 39 36 30 2, 2. I. 9 6 0 ____ 225 2. 9 2. 5 2. 5 2. 0 23. 23, 228 228 219 219 216 215 20. 198 (85 (7, 1,. 3,. ii9 96 90 8, 69 5, ,A ii ii 15 12 ,a 9 i 3 -___ 37 . 2 42 47 50 5, 5, 52 5, 52 50 50 5. 5. 52 . 9 . , 40. 35 32 28 2, 23 1, 15 12 9 8 4 2 2 2 I , ____ 2. 85 3159 3232 33,3 3399 3. 20 3. 85 3557 3597 3575 3696 3732 37,5 3,,9 359. 3610 350. 3092 3096 2950 2793 25,. 25. 3 2356 2170 ,725 ,673 1596 ,376 12,. (07. (02. 7. 3 356 – – – – represents the policy headway which is equal to 60 min, and the fifth row is the desired occupancy, 4.As can be seen, 4 = 65 has been assigned to peak hours and 4 = 47 (the total number of seats) assigned to off-peak hours. The last column in the table represents ? Pv where each entry in the table is Pu j=l (an average value across several checks). Thus, the daily max load point is the 12th stop with a to tal of 3732 passengers and P, in eqn (2) refers only to those entries in the 12th row. The second point check method is based on the max load observed in each time period. That is, This method is called Met/&Z. Table 2 lists the value of P. , and the values of Pi for allj based on the input data given in Table 1.The comparison between methods 1 and 2 and between the point check and ride check methods using more data sets is performed in a following section. 2. 3 Load profile methodr The data collected by ride check enables the scheduler to observe the load variability among the bus stops. Usually the distribution ,of loads will suggest possible improvements in route design. The most common operational strategy resulting from observ- ing the various loads is short turning (shortlining). A turnback point before the end of the route may be chosen, creating a new route overlapped by the existing route.Other route design related actions using the load data are route splitting and route s hortening. For the route design considerations, bus operators frequently use the histogram of the average load plotted with respect to each bus stop without relating the loads to the distance between the stops. The only concern of these operators is to identify a sharp increase or decrease in the average load for possible route design changes. This has been observed at SCRTD (Los Angeles), CTA (Chicago)–while using the EZDATA program provided by the company ATE, Egged (Israel), and other bus properties world-wide.A more appropriate way to plot the loads is to establish a passenger load profile. In this technique, the loads are plotted with respect to the distance traveled from the departure stop to the end of the route. It is also possible to replace the distance by the average running time, but in this case it is desirable for the running time to be characterized by low and persistent variations. Two examples of the load profile are given in Figs. 1 and ‘2, exhibiting the data of two time periods appearing in Table 1. Each asterisk in the figures represents five passengers.The area under the load profile curve is simply passenger-miles, or in this example, passenger-kilometers, both of which are AVISHAI CEDER Table 2. Output indication of variables used in methods 1 and 2 320 1259 1359 1459 ,559 284 389 . ,1 0 0. 0 0. 6 ‘†¦Ã¢â‚¬ ¦. *‘†¦ 50 100 150 2po .. *. **.. **†¦.. * †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. 2. 1 2. 9 3. 2 3. 5 3. 9 4. t 4. 7 5. 3 5. 5 5. 9 9. 5 5. 7 7. 3 7. 7 9. I 8. 5 9. 1 9. 5 10. 0 10. 4 IO. 6 10. 9 ,,. I 11.. 11. 5 12. 1 ‘2. 5 13. 2 13. 9 I.. 1 14. 8 15. 0 †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ ’ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦. †¦ Fig. 1. A load profile for one morning time period (8:00-8: 59) based on the data in Table 1. Bus frequency determination using passenger count data 443 NIJMSER PISSENGERS OF FOR INTERVAL ~500 TO 1559 DlSTlNcE (KY. 1 50 – NUMBEP PAssENGERI OF 200 250 300 ’ 350 400 450 500 I 100 150 L†¦Ã¢â‚¬ ¦.. 1†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ 1†¦Ã¢â‚¬ ¦.. L†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ L†¦ *†¦.. ~.. *.. *†¦ ~†¦ **†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ *.. *.. ~†¦.. ~†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. *.. *†¦ *†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ *†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚ ¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã ¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. Fig. 2. A load profile for one afternoon time period (15:[email  protected]:59) based on the data in Table 1. measures of productivity.If a straight line is drawn across the load profile at the point where the number of passengers is equal to the observed average hourly max load, then the area below this line but above the load profile is a measure of the non-productive service. When method 2 is used to derive the headways, and dj is equal to the number of seats then this measure is the empty seat-miles (or empty seatkilometers). Figure 1 is characterized by a relatively large value of empty seat-kilometers per bus in comparison to Fig. 2. However, the additio nal information supplied by the load profile enables one to overcome such an undesirable characteristic.This can be done by introducing frequency determination methods which are based on passenger-miles rather than on a max load measure. The first load profile method considers a lower bound level on the frequency or an upper bound on the headway, given that the bus capacity constraint is held. Method 3 is: q? = max One way to look at method 3 is that the ratio A,/L of the load P, (regardless of its statistical definition) as opposed to the max load (P,) in method 2. Method 3 guarantees, on the average basis of P,, that the on-board passengers at the max load section will not experience crowding above the given bus capacity c.This method is appropriate for frequent cases in which the schedulers wish to know the number of bus runs they can expect to reduce by relaxing the desired occupancy standard, avoiding overcrowding at the same time. This allows them to handle the following: (i) demand changes without increasing the available number of buses; (ii) situations in which some buses are needed elsewhere (e. g. breakdown and maintenance problems, or emergencies); (iii) fewer drivers than usual (e. g. due to budget cut, or problems with the drivers’ union).On the other hand, method 3 can result in unpleasant travel for an extended distance in which the occupancy is above 4. To eliminate or to control this possible undesirable phenomenon, another method is introduced. Method 4 establishes a level of service consideration by restricting the total route distance having loads greater than the desired occupancy. Method 4 takes the explicit form: is an average representative A. P. -A-,1 dj. L c 1 [ [ 4. L’ Ai1 pj c where Ii is the distance between stop i and the next stop (i + l), Aj is the area in passenger-miles (km) under the load profile during time period j, and L is the route length.The other notations are previ )usly defined in eqns (l)-(3). 4? =max St. 1 Ii I jJj. L, *I) 444 AVISHAICEDER by time of day are same to that indicated in Table 2, and for all five sets the capacity is c = 80 passengers. In method 4 based on eqn (5), three values are assigned to /I, for all j’s: 0. 1, 0. 2 and 0. 3. That is, 10, 20 or 30% of the route length is allowed to have an observed occupancy, P, exceeding the desired one, 4. The results for route 27(A) appear in Table 3. The headway results of the four methods are compared graphically in Fig. 3 where the results of method 4 are for only the 20% limit case (8, = 0. ). Similarly to Fig. 3, the results of the remaining four data sets are displayed only in the computer generated graphical form in Figs. 4-7. . These illustrations are used for further analysis of the results. The first comparison can be made between method 1 and method 2 for the point check decision. Obviously, it is less costly and more convenient to retain an observer at one bus stop during the entire working day, than to a ssign the same observer or others to a different stop at every period j. This candidate bus stop is the one characteiized by P, (see eqn (2)).The comparison between the two methods is performed by the ,$ test between two sets of actual observations-P. , vs P, for each data set (see Ceder and Dressier, 1980). The results are as follows: where I, = {i: (P,,/F,) > d,} or 4 is the set of all stops i in time period j such that the load Pq exceeds the quantity of 4 times the number of buses determined iteratively by F,, and pj is the allowable portion of the route length at period j in which Pti can exceed the product (4)()(d,). The other notations in eqn (5) are previously defined. By controlling the parameter /Ii it is possible to establish a level of service criterion.Note that for /I, = 0, /I, = 1. 0 method 4 converges to method 2 and method 3, respectively. 2. 4 Results of actual data and comparison A pL/l program has been written for all the four methods. This program, in addition t o calculating the bus frequencies, determines the associated integer headway (in minutes) by simply dividing the length (in minutes) of a considered time period j by 4. , and rounding it to the nearest integer. The headway information is essential for the timetable preparation, as is explained in the next section. The input data presented in Table I and also the data taken from four more routes have been run by the program.The additional data are four Egged routes: 2(A), 2(B), 12(A), and 39(A)—all from Jerusalem. Their policy headway and desired occupancy Route (Direction) 27(A) 2(A) 2(B) d. f. 13 16 18 14 16 X2 63. 24 14. 59 58. 51 492. 82 117. 82 null hypothesis about equal methods (at the 5% significance level) reject don’t reject reject reject reject I&4) 39(A) Bus frequency determination using passenger count data 445 BUS NO. 27 , DIRECTION A LEGEND o – METHOD + – METHOD . – METHOD 1 2 3 L (BY2OP a – METHOD 0’. 7:oO . . 9 . . oo 11-00 . . TIME 13. 00 OF DAY ’ * 15. 00 ’ . 1Ãâ€"00 1 . 19:oo 21 00 g Fig. . Comparison of headway results for route 27(A). Consequently, only in route 2(A) can the daily max load point replace the hourly max load point. The PL/l program provides this comparison. The graphical comparison between the headways in Figs. 3-7 shows the expected result: method 2 always gives the minimum headways while method 3 results in the highest headways (except in 2 out of 82 time periods). Another characteristic of the headways, exhibited particularly in Figs. 4 and 5, is that the given policy headway (60min) is used during off-peak hours. A point worth mentioning is that the esults might be sensitive to the length of the time intervalj and that different time intervals may be used for peak and off-peak hours. Further analysis and comparison of the results are addressed in the following two sections. 3. A PRELIMINARY CRITERION IN DETERMINING FURTHER DATA COLLECTION METHODS In this sec tion an assumption is tested that particular load profile characteristics suggest the data collection method to be used. The basic idea is to BUS NO. 2 , DIRECTION â€Å"A† . – METHOD 3 6, 04.. . . . . . . I a. . -METHOD LCBY20%1 * ’ . ’ 6. 00 800 10 00 12. 00 TIME OF 14. 00 DAY 16:OO 16 00 20. 00 2:oo Fig. 4. Comparison of headway results for route 2(A). 446 AVISHAICEDER BUS NO. 2 , DIRECTION ‘B’ . 6 _ METHOD L CBY20T. l 01 . 5:oo . . 7 00 . 9 00 * 1100 . TIME . 13. 00 _ 15 00 OF DAY .. , 17 00 . 19 00 . . 21 00 23 00 Fig. 5. Comparison of headway results for route 2(B). provide the bus operator with adequate preliminary guidance in selecting the type of method based on old load profiles. The assumption to be investigated is that a relatively flat profile suggests the use of a point check procedure (method 1 or 2) whereas a ride check procedure (method 3 or 4) would be appropriate otherwise.One property of the load profile is its density, p. This is the observed measure of total passenger-miles (total ridership over the route) divided by the product of the length of the route and its maximum load (passenger-miles which would be observed if the max load existed across all the stops). Thus, the load profile density for hour j, pj, is P’=e. The load profile density is used to examine the profile characteristics. High values of p indicate a relatively flat profile, whereas low values of p indicate a significant load variability among the bus stops. A BUS 60 NO. 39 , DIRECTION â€Å"A† LEGEND % $ s 2 L2. 36. METHOD ‘ (BY ZCr%l = 30. p' I 9 i P 12. 6. 24. 18. 0. 1 6 00 . a 00 . 10 00 . 12. 00 TIME OF woo DAY 16 00 18. 00 20 00 2200 Fig. 6. Comparison of headway results for route 12(A). Bus frequency determination using passenger count data 447 BUS NO. 12 , DIRECTION ‘A† LEGEND o _ METHOD + . METHOD METHOD 1 ;/ 2 3 : ,’ / ;* I 8 ’ METHOD L (ByZoZl 0’ 500 I – I 1 7 . oo 9:oo 11:oo I . TpF ;nY15:00 ‘. 17:oo ‘ 19:oo ‘ ‘ Fig. 7. Comparison of headway results for route 39(A). 3. 1 Mathematical analysis One way to approximate the observed shapes of profile curves is by using a mathematical model.The lognormal model has been selected for this purpose since it provides a family of curves which can be controlled by varying the parameters p and u. The lognormal model takes the form: f(x) =. & The equation satisfying (df(x)/dx) = 0, is e-oDX-*~/262; x ; 0. the optimum (7) conditions, x,=d-â€Å"= (8) This continuous model can only approximate some of the observed load profiles since it has only one peak and represents monotonically increasing and decreasing functions before and after this peak, respectively. Nonetheless, this model is useful in observing some general differences between the ride check and point check methods.In order to be able to compare the methods,f(x) is used as a normalized load (the load divided by the max l oad) and x is used as a normalized distance (the distance from the departure stop divided by the length of the route). At a given time interval of one hour, j, the considered max load is Pi = 650 passengers. Given that dj = 65 and that c = 100, the determined frequency and headway for both methods 1 and 2 are 4 = 10 and Hj = 6. By applying this information to methods 3 and 4, using a variety of lognormal curves, one obtains the frequencies and headways shown in Table 4.The results in this table are aranged in increasing order of density. For method 3, the capacity constraint determines the values of F and H up to an including p = 0. 64 and up to different p values (if any) for method 4. Examples of the lognormal normalized curves are shown in the computer generated Figs. 8 and 9 for two p and variety of p values. Note that the relative location of the max load point can be found by eqn (8). From Table 4 it appears that for method 3 the ride check (load profile) data results in the s ame rounded headway as for the point check (max load) data for p 2 a where 0. 4 ; a 5 0. 87. For method 4 the ride check and point check information tend to yield the same headways for p 2 ai where i = 1,2,3, for the 10, 20 and 30% cases, respectively, and 0. 34 ; a, I 0. 43, 0. 50 ; a2 I 0. 56, and 0. 64 ; a, 50. 68. 3. 2 Observed densities and discussion The five data sets mentioned in the previous section were also subject to the load profile density examination. The pi values for each considered hour j, based on eqn (6), were calculated and are shown in Table 5. For example, in Fig. 0, which is part of the PL/l program output, one can visually compare the load profiles associated with the highest and the lowest p value of data collected on route 39(A). As can be seen from Table 5, none of the p values exceed 0. 8. This suggests that one cannot reach, by calculation, same headways for method 3 and method 2. Figures 3-7 reveal that the determined headways of method 3 are always gr eater than those of method 2 excluding the cases of policy headway. However, no clear cut conclusion can be drawn when trying to associate the p values in Table 5 with those 448 Table 4. Frequencies (F) and headways log-normalAVISHAI CEDER (H) for different load profile configurations (derived from the model) using methods 3 and 4’ Method 3 profi 1e density T by 10% H F 7. 60 H Method 4 20% H 9 9 9 9 9 8 7 : 8 -%6 6 6 6 6 6 6 6 6 6 1 by by P F F F 30% H 9 9 9 9 9 9 0. 18 0. 25 0. 27 0. 32 0. 34 0. 43 E 0:48 0. 50 0. 56 0. 57 0. 59 0. 62 0. 64 0. 68 0. 75 0. 76 0. 78 0. 84 0. 87 *For Note: 6. 50 6. 50 6. 50 6:50 6. 50 6. 50 6. 50 6. 50 6. 50 6. 50 6. 50 6. 50 6. 50 6. 77 7. 46 7. 63 7. 77 8. 41 8. 72 9 9 9 9 E% 9’ z 9 9 9 9 9 9 9 : 7 7 -4. 8. 46 6. 50 8. 36 7. 55 9. 00 7 9 7 7 -i5: 6 6 6 6 6 6 6 6 6 6 6 6 6 6. 50 6. 50 6. 50 6. 50 6. 50 7. 05 8:05 E 7. 5 x 9:31 8. 85 9. 04 9. 42 9. 36 9. 68 9. 87 9. 76 9. 92 6. 50 6. 50 6. 50 6. 50 6. 50 6. 50 z! 9:45 9. 05 9. 92 9. 76 9. 81 9. 65 9. 79 9. 87 9. 86 9. 93 9. 97 9. 96 9. 97 constraint ?E 8’ 6:50 9 6. 50 9 9. 27 6 8. 16 7 8. 46 7 7. 80 7 8. 19 7 8. 72 -b 8. 76 6 9. 23 6 9. 72 6 9. 46 6 9. 82 6 Methods 1 and 2: Uhenever F-10. H=6 where d F=6. 50, H=9 the capacity = 65, c-100. is met. in Table 4 regarding the comparison between methods 4 and 2. Figures 3-7 clarify this by illustrating the results of method 4 for the 20% case. The matchings (same headways for methods 2 and 4) across all the five data sets range between p = 0. 38 (route 2(B), for the hour 22:00-22: 59) and p = 0. 744 (route 39(A), for the hour 16:00-l6:59). On the other hand, the non-matching cases range between p = 0. 457 (route 2(B), for the hour 8:00-8:59) and p = 0. 777 (route 12(A), for the hour 15:00-15:59). Consequently, when applying method 4 to the observed load profiles, the results of the lognormal model cannot be explicitly used and an actual comparison between methods 2 and 4 should be performed. In practice, the bus operator wishes to save bus runs and eventually to be able to perform the matching between demand and supply with fewer buses.As is shown in the next section, different headway values do not necessarily save bus runs or reduce the required fleet size. However, the analysis made about the profile density measure can be used by the bus operator as a preliminary check before entering a more comprehensive analysis. The following are practical observations: (i) for densities below 0. 5, p-o 66 OK 0 1 .2 .3 Fig. 8. Four approximated load profiles based on the log-normal model (a = 1. 00). Bus frequency determination using passenger count data Fig. 9. Four approximated load profiles based on the log-normal model (u = 1. 0). savings are likely to result by gathering the load profile information and using either method 3 or 4 (alternatively for such low p values, the profile can be examined for short turn strategies); (ii) for densities between 0. 5 and 0. 85, it is recommended that an actu al comparison be made between the point check and ride check methods-along with further saving considerations (see next section); and (iii) for densities above 0. 85 it is likely that the majority of the required information for the headway calculation can be obtained from a point check procedure (either method 1 or 2). . ALTERNATIVE The TIMETABLES AND FLEET SIZE possible to initiate the task of scheduling buses and crews to the previously determined trips. Naturally, the bus operator wishes to utilize his resources more efficiently by minimizing the number of required buses and the cost of the crew. To accomplish this, the scheduler examines different timetables during the bus and crew assignment processes. This is done by shifting the departure times or by reducing the number of departures without referring usually to the initial source of passenger loads-the profile.Therefore, it is desirable to extend the analysis deriving appropriate headways, to an evaluation of timetables in conjunction with the required resources. 4. 1 Construction of timetables The number of bus runs determined by the timetable and eventually the number of buses required, is sensitive to the procedure used by the scheduler to CONSIDERATION AT THE ROUTE LEVEL products of the derived headways are the timetables for the public, the bus drivers and supervisors. Once the timetables are constructed, it is Table 5. Load profile densities @) for five data sets I 500. ! :00 7:oo 8:00 9:oo lo:oo Time Interval : – 6:59 – 7:59 – 8:59 – 9:59 – 10:59 – 559 : Route Z(A) v-e 0. 489 Route Z(B) Route 12(A) ll:oo 12:oo 13:oo 14:oo 15:oo 16:00 17:oo l 19:oo 20:oo 21:oo 22:oo 23:00 – 11:59 12:59 13:59 14:59 15:59 16:59 17:59 18:59 19:59 20:59 21:59 22:59 23:59 0. 668 0. 557 0. 687 0. 548 0. 687 0. 477 0. 694 0. 652 0. 699 0. 606 0. 632 0. 73j 0. 610 0. 524 0. 588 0. 543 ___ 0. 524 0;702 0. 752 0. 457 0. 586 0. 592 0. 647 0. 620 0. 679 0. 764 0. 662 0. 717 0 . 722 0. 618 0. 673 0. 633 0. 588 0. 538 0. 546 0. 661 0. 705 0. 625 0. 731 0. 637 0. 589 0. 680 0. 39 0. 740 0. 712 0. 777 0. 640 0. 565 0. 650 0. 509 –a _-_ -se -me ___ –0. 563 0. 567 0. 715 0. 765 0. 717 0. 672 0. 636 0. 733 0. 723 0. 641 0. 712 0. 639 0. 576 0. 593 ___ _____ Route 27(A) _-_ 0. 651 0. 561 0. 589 0. 674 0. 594 0. 559 0. 619 0. 644 0. 599 0. 691 0. 744 0. 626 0. 657 0. 544 0. 686 0. 610 0. 577 _-_ Route 39(A) 0. 0 0. 3 0. 4 0. 7 1. 1 1. 3 1. 7 2. 3 ?. I 2. 7 3. 1 3. 5 3. 9 4. 4 4. 9 †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. 5. 6 5. 1 ‘6. 2 6. 4 6. 7 7. 1 7. 5 7. 8 8. 2 8. 4 8. 6 9. 0 9. 1 9. 2 9. 5 9. 6 †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. .; †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦ †¦ .* .. ** †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦ †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. Fig. 10. Two load profiles of route 39(A) with the highest density @ = 0. 744) on the left and the lowest density @ = 0. 544) on the right. construct the departure times.Some bus operators routinely round the frequency 5 to the next highest integer and then calculate the appropriate headways for the considered time period. By doing so, they increase the number of daily departures beyond what is needed to appropriately match the demand with the supply. Such a procedure may result in nonproductive runs (many empty seat-miles). For example, in Table 3 the number of daily required departures, F 4, is 77. 01, 55. 64 and 73. 24 for methods j=l 2,3 and 4 (20% case), respectively. When the quantity F, is â€Å"rounded up,† one obtains respectively: 85, 65 and 80 daily departures for these three methods.Obviously, by rounding k; to the next highest integer, the sched uler increases the level of passenger comfort but, at the same time, causes an unnecessary operating cost. However, in some cases the â€Å"round up† procedure may be justified if the scheduler uses the Pq quantity as an average load whereas the variance of the load is high. In this case (provided that additional runs are made by rounding up Fj), the possible overcrowding situations may be reduced as opposed to increasing the average empty seat-miles. Nonetheless, to overcome the problem of highly variable oads, one can use a statistical load measure which considers its variance as an input to a frequency method (see remarks in eqn (1)). Another characteristic of the existing timetables is the repetition of departure times, usually every hour (see Vuchic, 1978). These easy-to-memorize departure times are based on the â€Å"clock headways†: 6, 7. 5, 10, 12, 15, 20, 30, 40, 45 and 60 min. Generally, headways less or equal to 5 minutes are not considered by schedulers to influence the timing of passenger arrivals to a bus stop. The clock headway is obtained by rounding the derived headway down to the nearest of the above â€Å"clock† values.Consequently, and similar to the â€Å"round up† frequencies, the clock headways require a higher number of departures than what is actually necessary to meet the demand. In order to keep the total daily number of departures as close as possible to the sum of the obtained Fj’s by the four methods, the derived headways in Table 3 and Figs. 3-7 are simply based on the â€Å"round to the nearest integer† procedure. Note that for a high frequency value it may turn out that rounding Fj result in fewer departures than rounding the derived headway. However, for high frequencies, the timetable is not required.Also, if 5 is rounded first it is necessary to perform a second rounding on its associated headway (since timetables are built by headways-not frequencies). This by itself may ultimately decrease the accuracy of matching the demand with the number of departures. An attempt is made in Table 6 to construct six daily timetables for methods 2,4 and 3 using both the derived and the clock headways based on the information in Table 3. The only incompatability is that Bus frequency determination using passenger count data 451 Table 6. Various timetables for bus 27(A) based on methods used and considered headways Y I9 ii:01 :3a :oa :57 :15 a:17 :22 :3a :29 :59 :36 9:14 :43 ~24 :50 :34 :57 :44 14:04 :54 :I1 10:04 :1s :15 :25 :26 :32 :37 :39 :4a ~46 :59 :53 11:09 15:OO :ia :08 ~27 :I6 ~24 :36 :45 :32 :54 :40 12:03 :4a :13 :56 :23 16:06 :33 :la :43 :30 :si :i5 17:04 :30 :12 :45 :20 a:00 :2a :20 :36 :40 :44 9:oo :52 :lO ia:m :20 :la :30 :36 :40 :54 :50 19:oa 1o:oo :19 :lO :30 :20 :41 :30 :52 :4o 20:24 :50 21:17 11:OO :07. 5 :I5 :22. 5 :30 :37. 5 :45 :52. 5 12:oa :lO :30 :40 :50 13:oo :06 :12 :la ~24 :30 :36 :42 :4a :54 14:oo :06 :12 :la ~24 :30 :36 ~42 :4a :54 1s:oo :07. 5 :15 z 22. :30 :I5 :52. 5 16:Ml :12 ~24 :36 :4a 17:oo :07. 5 :15 :22. 5 :30 :37. 5 :45 :52. 5 la:00 :15 :20 :ll :40 :19 a:03 :27 :29 :35 :55 :43 9:13 :5i :23 :59 :33 14:06 :43 :13 :53 :20 10:03 ~27 :14 :34 :25 :41 :36 :4a :47 :55 :5a 15:oz ii:08 :lO :17 ii; :26 :34 :3s :44 ~42 I :53 :5Ll ! lZ:Oi :G :12 16:oa :21 :34 :34 :44 :47 :12:54 17:W :la ~27 :36 :45 :54 ia:oa ~27 ~46 :59 19:ll :23 :35 :47 2o:zo 21:15 ! uer~ved LIOC): Headway 00 12~30 16 00 7 :12 :23 ~24 :46 :36 a:lo :4a :36 17:w :55 :07. 5 9:oa I:00 :22. s :I5 :21 :10 :30 :34 :20 :37. 5 :22. 5 :46 :30 :30 :45 :37. 1o:oo :40 :52. 5 :15 :45 :50 14:oa :30 :52. 5 I:00 :06 :45 :10 :12 la:00 1l:OO :15 :20 :18 :I2 :30 :30 ~24 :45 :24 :40 :30 :36 19:oo :50 :36 :4a 1:oo ~42 :12 ~24 12:oa :07. 5 ~48 :15 :lS :54 :36 :30 :40 :22. 5 15:oo :45 :30 :07. 5 2o:oo 13:oo :45 ~27. 5 :15 :ll :45 :22. 5 21:30 :52. 5 :30 2:oo z37. 5 :10 :45 :44 :20 :52. 5 20’) i : . I :oo ’ I :lO :2o :Jo :40 :50 2o:oo :45 21:30 ! : z24 i ( i:: ; i ~55 uETmb3 He4dw4y , Clock HeadMy 14:os 7:oo 13:so 19:5 :20 14:oo :4 :14 :40 :07. 5 2o:a :23 :I5 a:00 21:c :32 :20 :22. 5 :41 :40 :30 :50 9:oo :37. 5 :59 :12 :45 15:08 :I4 :52. :ia 15:oo ~36 :2a :4a :10 :3fl 1o:w :20 :4a :15 :30 :5a :30 :40 16:lO :45 :50 :25 11:OO 16:OO :40 :12 :15 :55 ~24 :30 11:08 :36 :45 :20 :48 17:oo :32 . 44 12:oo :12 I56 :15 :I2 :30 :36 la: 16 :44 :45 :48 19:07 13:oo 18:OO :26 :lO :20 :20 :40 :45 :30 20:23 19:oo 21~23 :40 :15 I 1 the clock headway technique includes a value of 7. 5 minutes whereas the derived headways do not allow non-integers. The transition between the hourly periods for the derived headway is based on a smoothing rule that use the rounded down average headway whenever a transition from one hour to another occurs.For example, in method 2 the transition between the departures 8: 59 and 9: 14 is based on rounding down the average headway of 21 and 1Omin. A point worth mentioning here is that the schedulers often have the knowledge of different load patte rns during one period j, e. g. more loads in the first half hour than in the second. In this case they can request splitting or changing the time period j for further data collection. Also, they can insert more departures in the heavy-load interval than in the remaining interval, while ensuring the approximate total of Fj departures.Further consideration about creating timetables appears in a report by Ceder (1983). This includes development of methods to construct timetables with even headways and timetables with even (average) loads on individual buses while the headways are unevenly spaced. 4. 2 Single-route fleet size examination Within a large-scale bus system, buses are often shifted from one route to another (interlining) and they frequently perform deadheading trips in order to operate a given timetable with the minimum required buses.It is desirable to analyze the procedures to construct timetables and scheduling buses to trips simultaneously. However, due to the complexity of this analysis, these two procedures are treated separately. Therefore, in a bus system with interlining routes, the alternative timetables can be evaluated on the basis of the total number of required departures. This can serve as an indicator for the number of buses required, but without inserting each alternative timetable to the scheduling procedure, it will be difficult to predict the effect on the fleet size.One fleet size test that can be performed is based on the assumption that interlinings and deadheading trips are not allowed and that each route operates separately. In this case, given the mean round trip time, the minimum fleet size for that route can be found similar to the formula derived by Salzbom (1972). Let T be the round trip time including the layover and turn around time and that departures occur at discrete time points: t,, t2, r,, . . . , t,.Also, let N, be the number of departures between and including the two departure points t, and t, such that three con ditions (i) are fulfilled: t, ; tr, (ii) t, – tr I T and (iii) t,+, – t, ; T. Given that if t, = t, then the first tk, k = 1,2,. . . , n to agree with the first two conditions is t,. the minimum single-route fleet size, N,,,, is: Nmi,=max k i k=l Nk Following Salzborn arguments, eqn (9) simply means that N,, is the largest number of buses departing in any time interval of length T. This result can